The sharpening Hölder inequality via abstract convexity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharpening of Some Inequalities via Abstract Convexity

One of the application areas of abstract convexity is inequality theory. In this work, the authors seek to derive new inequalities by sharpening well-known inequalities by the use of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean inequalities are studied in this sense, concrete results are obtained for some of them. Mathematics subject classification (20...

متن کامل

Sharpening the LYM inequality

More detailed information about the s t ructure of Sperner families can be obtained by considering their level sequences. The level sequence of a family 4 , f ( ~ ) = {fi(Y)}, has f i (~) equal to the number of members of ~ with exac t ly ' / e l emen t s . Sperner 's theorem asserts tha t ~fi(2~)<_ ([~j) . A stronger restriction on the level i sequence was proved independent ly by Lubell, Yama...

متن کامل

Another View on the Hölder Inequality

Every diagonal matrix D yields an endomorphism on the n-dimensional complex vector space. If one provides the n with Hölder norms, we can compute the operator norm of D. We define homogeneous weighted spaces as a generalization of normed spaces. We generalize the Hölder norms for negative values, this leads to a proof of an extended version of the Hölder inequality. Finally, we formulate this v...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

A sharpening of Fisher's inequality

Frankl, P. and Z. Filredi, A sharpening of Fisher’s inequality, Discrete Mathematics 90 (1991) 103-107. It is proved that in every linear space on v points and b lines the number of intersecting line-pairs is at least (z). This clearly implies b 2 v.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS

سال: 2016

ISSN: 1300-0098,1303-6149

DOI: 10.3906/mat-1505-58